A note on some convergence properties of spline functions
نویسندگان
چکیده
منابع مشابه
some properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولdetermination of some physical and mechanical properties red bean
چکیده: در این تحقیق، برخی خواص فیزیکی و مکانیکی لوبیا قرمز به-صورت تابعی از محتوی رطوبت بررسی شد. نتایج نشان داد که رطوبت بر خواص فیزیکی لوبیا قرمز شامل طول، عرض، ضخامت، قطر متوسط هندسی، قطر متوسط حسابی، سطح تصویر شده، حجم، چگالی توده، تخلخل، وزن هزار دانه و زاویه ی استقرار استاتیکی در سطح احتمال 1 درصد اثر معنی داری دارد. به طوری که با افزایش رطوبت از 54/7 به 12 درصد بر پایه خشک طول، عرض، ضخام...
15 صفحه اولNote on Some Additive Properties of Integers
Let A=2 .3 . . . p r , the product of consecutive primes, be sufficiently large . By elementary method we prove that the number of solutions of the congruence p2-q2 =-0 (mod A) with 0 < q < p < A is greater than 1 A 1 + 41og log A . But the integers of the form p 2-q 2 with 0 < q< p < A lie all between 0 and A', hence there exists a multiple of 4 say n(<,4") such that the number of solutions of...
متن کاملNote on Some Elementary Properties of Polynomials
(4) cf ^ 2(1 d) >\ Equality holds only for f(x) = 1— x, a= — (1 —d). Suppose there exists a polynomial of degree n>2 satisfying (1) with Cf ̂ 2 ( 1 — d)\ then we will prove that there exists a polynomial of degree n — 1 with Cf >2(1 —d); and this proves (4) since it is easy to prove that (4) is satisfied for polynomials of second degree, that is, for l -# 2 . Denote the roots off(x) by Xi = — 1,...
متن کاملOn The Mean Convergence of Biharmonic Functions
Let denote the unit circle in the complex plane. Given a function , one uses t usual (harmonic) Poisson kernel for the unit disk to define the Poisson integral of , namely . Here we consider the biharmonic Poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . We then consider the dilations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1978
ISSN: 0898-1221
DOI: 10.1016/0898-1221(78)90039-1